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THE FRACTURE MECHANICS APPROACH TO UNDERSTANDING
SUPPORTS IN UNDERGROUND COAL MINES

By James M. Kramer, Ph.D.,' George J. Karabin, P.E.,2and M. Terry Hoch?

ABSTRACT

This paper introducesthe fracture mechani cs approach—auniqueway to predict the stability of acoal mine
panel. The technique uses analytic equations to calculate the stress, strain, and yield characteristics of coal
support systems. It uses fracture mechanics to model almost every type of mine support structure. Another
feature is a method that incorporates field-tested knowledge into the analytical analysis. For example, this
technique can model the yield characteristics of acoal seam by combining empirical pillar strength equations
into the analytic analysis. It may be possible to simulate multiple-seam mining by incorporating subsidence
methods into the analysis. The method is simple and quick, which makes it attractive for stress anaysis
software. It should be more accessible to those in the mining industry who do not have expertise in rock
mechanicsor numerical modeling. Although the purpose of thisresearchisfor modeling coal mines, it should
be adaptable to any mine in atabular deposit.
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INTRODUCTION

This paper presents a new way to analyze the mechanical
behavior of underground coa mine supports. Included are
analytic expressions describing the stress, strain, and yielding
characteristics of acoal seam. The fracturemechanicsapproach
(FMA) provides the capability to model amost every type of
mine structure, including pillars, yield pillars, longwal gob,
chocks, cribs, posts, and hydrostaticloads. Inaddition, it predicts
pillar stability by combining empiricd pillar strength equations
into the analytic analysis. This makes the procedure useful for
understanding how various support structures affect the
mechanica performance of amine panel.

Although the method is not as sophisticated as numerical
analysis, it offers several advantages. The analytic equation

makes it is as accurate as numerical modeling, but quicker and
easier touse. Because of thefew egquationsinvolved, itiseasy
to incorporate the process into a computer spreadsheet or
programmablecalculator. Real-timedesignanalysisispossible
by incorporating the technique into computer code. For ex-
ample, one can change adesign structure (e.g., add acrib) and
seeinstantly the resultant stress effect. The coal yielding proc-
essuses empirical pillar strength equations derived from years
of field measurements. Combining these equations into the
analytic analysis provides insight into pillar stability. The
system presented in this paper offersaunique perspectivefrom
which to study mine panel stability.

DESIGNING SUPPORT STRUCTURES FOR COAL MINES

There are severa ways to analyze the stability of amine
layout. The easiest and, in some cases, most reliable isto use
pillar strength equations. These equations are devel oped from
extensive knowledge of coal seam behavior [Mark and lannac-
chione1992]. Most arebased on physical stressmeasurements,
however, some come from numerical studies or analytic
equations. All of these methods use the pillar width-to-height
ratio asthe controlling factor. These strength equations can be
accurate; however, they assumethat the coal pillar isthesingle
means of support. Itisnot possibleto study the effectsof cribs,
posts, longwall gob, chocks, etc. Also, these equations do not
predict the stress distribution through the panel, nor do they
predict the extent of the yield zonein the coal.

There are other, more accurate, ways to analyze stability.
Numerical modeling, if used properly, can be very accurate. It

can predict the stress distribution throughout the entire mine
environment, including the coal seam, surrounding strata, slips,
faults, and all types of supports. However, thismethod istime-
consuming and requiresacertain amount of technical skill. For
example, using finite elements, it would take askilled engineer
aday or moreto analyzetheyield zonein acoal pillar based on
data derived from field measurements.

This paper discussesasimple, quick, and accurate solution
for predicting the stress distribution in coal pillars and other
structures. It usesacombination of fracture mechanicsand em-
pirically derived techniques to predict the extent of the yield
zonein acoal pillar. 1t can model nearly every structure used
for mine support. Numerica modeling will validate the ac-
curacy of the technique.

THE FRACTURE MECHANICS APPROACH

Understanding the FMA requires visualizing a coal seam
asan extremely thin layer in the stratum of the Earth. A tunnel
or opening in the coal would appear as a thin crack in an
infinite mass.* 1t should then make sense that it is possible to
usethemechanicsof cracksto analyzethe stressessurrounding
openingsin coa seams.

Visualizing a mine opening as a crack is not new; others
applied it to their research [Barenblatt 1962; Hacket 1959;
Crouch and Fairhurst 1973; Berry 1960, 1963]. However, this
paper describes away to usethe fracture mechanicsdirectly to
predict pillar stress. Combined with a superpositioning

*In this paper, the term “crack” infers a mine opening and vice versa.
Therefore, crack-tip stressis the same asrib or pillar stress.

technique, it ispossibleto obtain the complete stressdistribution
throughout the mine panel. A yielding technique completesthe
analysis by offering realistic characteristics to the coal pillars.
Westergaard's equation is fundamental to fracture me-
chanics theory and is also the basic equation for the FMA
[Westergaard 1939]. The stress distribution at the crack tip is
identical to the distribution adjacent to a mine opening.
Westergaard describes the stress at the tip of acrack as
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where F(x) " stressdistribution adjacent to acrack tip,
a " 1/2 the crack width,
F " indgitu stress,

and X " distance from the center of the crack.

This equation implies that the only parameters needed to
predict elastic rib stress are the entry width and thein situ stress
(figure 1). Westergaard derived equation 1 by assuming that
the stress field acting on the crack is located at an infinite
distancefromthe crack surface. Another assumptionisthat the
crack width must align with the planes of this stress field. In
general, these conditions are similar to a mine environment.
The Westergaard equation will accurately predict the stress
distribution into the coal seam provided that the analysis
remains within the elastic range.

NUMERICAL METHODS VALIDATE THE
WESTERGAARD EQUATION FOR MINE ANALYSIS

Westergaard developed his stress function by making the
following assumptions: the crack has athickness of zero; it is
contained in an infinite, homogeneous plate; and the plate is
subjected to a uniform biaxia stress field. These conditions
match fairly the conditions encountered in acoa mineopening.
There are differences, however. A mine opening has an actual
thickness. The structural properties of the coal differ from
those of the surrounding rock mass. Also, a cod mine's
environment isunder theinfluence of agraduated, nonuniform,
biaxial stressfield controlled by gravity. Itisnecessary to con-
sider al of thesefactorstovalidatethe FMA. Previousresearch
demonstrates the accuracy of the FMA by comparing it to
numerical modeling output [Kramer 1996]. Itisshownthat the
technique matches the numerical modeling predictions with a
high degree of accuracy.

Figures 2 through 7 are plots that compare the stress
prediction of the FMA with that of numerical modeling. The
purpose is to show how well the FMA can predict stress even
in conditions less ideal than those used by Westergaard to
derive equation 1. Such conditions are similar to those en-
countered in an underground coal mine. All of the evaluations
use FLAC?® as the numerical modeling software. Spreadsheet
graphsare used to comparethe FM A stress prediction with that
determined by FLAC. Each demonstrates that the FMA com-
pares reasonably well with the FLAC model for varying con-
ditions of nonhomogeneity. Initialy, the model is homo-
geneous and smple. The FMA matches extremely well with
the numerical model [Kramer 1996]. Then, in order to
introduce nonhomogeneity into the numerical model, each

5 Fast Langrangian Analysis of Continuum, Itasca Corp., Minneapoalis,
MN.
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Figure 1.—Crack of width 2a subjected to a uniform biaxial
stress field.

individual structural property is altered independently and the
results are compared with the FMA. Finally, an evaluation is
made between the FMA and a nonhomogeneous numerical
model consisting of strata with properties even more variant
than an actual mine environment.

Figure 2 chartsthe comparative stress predictions between
the FMA and FLAC for a simple, elastic, and homogeneous
model. Notethat the stress distributions are nearly exact. The
only real differenceis at the edge of the mine opening. This
difference is due to the approximation technique used in nu-
merical analysis. The model in figure 3 has the same homo-
geneous properties as those for figure 2; it plots the stress
distribution through various planes in the coal seam. Thisil-
lustrates that the distribution, at any plane, remains consistent
with the distribution through the center plane of the seam.
Figures4 and 5 demonstratethat the coal'smodul us of dasticity
or Poisson's ratio has little effect on the stress distribution
through the center plane of the coal seam. The next step isto
compare the accuracy of the FMA for predicting the stress of a
nonhomogeneous numerical model. Figures6 and 7 relate the
results of the simulation.

Figure 6 showsthe compari son between FLAC andtheFMA
for the stress distribution produced in a graduated, nonuniform,
biaxial stressfield similar to that encountered in an underground
mine. For these studies, the horizontal stress is 0.3 times the
vertical stress. The design of the model places the coal seam at
adepth of 381 m. The structural parameters of the coal and rock
areequivdent. Thisstudy also compares the Westergaard equa-
tion to the stress at various planesin the seam (figure 6).

It can be seen that the nonuniform stress field in the nu-
merical model causesadeviationinstressfromtheWestergaard
prediction; however, most of the difference is near the edge of
the mine opening. In this portion of the mine rib, the cod is
yielding. Analytical methods do not exist for predicting the
stressdistributioninthisregion. Introduced later inthispaperis
a method that uses field measurements to describe the stress
distribution in the yield zone of acod rib.
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Comparing the Westergaard Equation to FLAC

(In situ stress = 6.9MPa, Entry width =15.2m)
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Figure 2.—Stress distribution in acoal seam nextto amine opening: comparison between numerical
analysis and the Westergaard equation. Homogeneous model.

Stress Distribution in Various Planes in the Coal Seam
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Figure 3.—Stress distribution at various levels in the coal seam. Properties similar to the model
in figure 2.



Different Moduli of Elasticity in a Biaxial Stress Field

40.0
35.0 |
30.0 | B -
- —e—FLAC
g 0] _s— E=6.9e3MPa,
% 20.0 ¥ | E =3.4e3MPa
7 4 | E=
g 15.0 | %, lm% E=1.7e3MPa
77 —x— Westergaard
10.0 - )
5.0 |
0.0 : .
0.00 5.00 10.00 15.00 20.00
Distance into the Seam (m)
Figure 4.—Stress profile for coal with different moduli. Four separate FLAC models.
Poisson's Ratio Comparison in a Biaxial Stress Field
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Figure 5.—How the Poisson ratio affects the stress distribution. Three separate FLAC models.
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Stress at Various Planes in the Coal Seam
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Figure 6.—The effect of a graduated, nonuniform biaxial stress distribution similar to conditions
underground. Stress profile at various levels in the seam.

Conditions Similar to a Real Mining Environment
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Figure 7.—Comparison of a model simulation of a real mine environment.



The numerical model described below will validate the
FMA's ability to analyze structural variations found in a real
mine environment. In this model, the strata are nhonhomo-
genous. In addition, the surrounding stressfield isvariablein
both the vertical and horizontal planes. Such a model has
structural variationsgreater than those encounteredin most coal
mines. The surrounding rock mass has a Y oung's modulus of
27,580 MPa and a Poisson's ratio of 0.2. The unit weight of
this mass is 0.03 MN/m®. The coal seam has a Young's
modulus of 3,448 MPa, a Poisson's ratio of 0.3, and a unit
weight of 0.03 MN/m®. The unit weights are high to enhance
the stress comparisons by increasing the effect of gravity
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loading. To show the effect of mining in an area subjected to
a high stress field, the model is initialized with a premining
stress prior to adding the mine opening. Adding a mine
opening to a model with a high biaxia stress field already
in place would alter the stress in the areas adjacent to the mine
opening. Figure 7 compares the Westergaard equation to
FLAC's analysis for different levels in the coal seam. The
distributionsvary considerably; however, most of thisdeviation
is near the mine opening. In this area, the coal will yield.
A technique will be presented in this paper that describes the
stress distribution in the yield zone of the coal.

THE POINT-FORCE METHOD USED TO SIMULATE MINE SUPPORTS

An essential concept of the FMA isthe process by which
a point force, acting on the surface of the crack, affects the
stress intensity at the crack tip. In mining, this point force
could be amine post or hydraulic jack. A continuous series of
point forces can model ayield pillar, longwall gob, the yield
zoneof thepillar, or any other type of mining supports[Kramer
1996]. Figure 8 depicts a crack with an internal point force,
P, pushing out against the crack surface. ThisforcePisat a
distance x from the crack center. This force affects the stress
intensity factor K at points A and B. The point forceissimilar
to the loading from a single-point mine support, such as a post
or hydraulic jack.®

Green functions are used to predict the stress intensity
factors [Parisand Sih 1965]. The factors are:

K, " P a%x @
J/Ba \ a&x
e % By ®
where K, ® dtressintensity at point A,
Kg " stressintensity at point B,
P * pointforce,
a " 1/2theopening width,
and x " distance from opening center

®The stress intensity factor is of utmost importance in the study of
fracture mechanics. It isameasure for the stress singularity at the crack tip.
For the case of uniaxial compression with force P at infinity, K must be pro-
portional to P. K, and K must also be proportional to the square root of a
length. For an infinite object, the only characteristic length is the crack size;
thus, K must take the form: K * F/(Ba).

YIELD PILLARS

Yield pillars are common in longwall mining; they control
floor heave and/or fine tune roof behavior. As the name
implies, the pillars yield, thus redistributing the load around a
control areainthemine. Itispossibleto model yield pillarsas
a continuous series of point forces. Equations derived from
in situ pillar strength measurements can determine the
intensities of the point forces. However, for the present
discussion, the point forces are considered uniform and equal
to the yield strength of the coal (figure 9).

Toillustrate the method, it is necessary to discuss only the
stress effect at a single crack tip (e.g., point A in figure 9).
Either equation 2 or equation 3 can describe the stressintensity
at point A. The correct equation to use depends on the location
of the point forces with respect to the aorigin. In the
discussion below, the location of the point forces (figure 9) is
chosen to provide the most compl ete exampl e of the technique.
Becausethelocationsof the point forcesare equally distributed
on both sides of the origin, solution to the stress effect at
point A requires using a combination of equations2 and 3. In

P
«— X —
B — A
P
. 2a

Figure 8.—Crack with wedge forces at x.
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absence of the yield pillar, the stress intensity at point A is
[Dugdale 1960]:

Kinsitu ) I:insitu Ba. (4)

Theyield pillar will act to reduce thisintensity. The a-origin
islocated in the center of the point forces; thus, the distribution
in the &x side is equal to the distribution in the %x side
(figure 9). The stressintensity factor at point A caused by the
continuous point forces on the %x side of the origin is
K *"K.*= i ‘ a%x

e A /Ba M\ a&x

0

©)

The stressintensity factor at point A caused by the continuous
point forces on the &x side of the originis

F d
Koo ™ Kot =2 | 35X g, ©)
/Ba M\ a%x
The stress intensity factor for the yield pillar becomes
Kyieid ) K%x % K&x' (7)

With the yield pillar in place, the stress intensity factor at
point A becomes

The Westergaard equation relates rib stress to the in situ
stress and the width of the opening. Because K, includes not
only thein situ stress but a so the effect of theyield pillar, itis
necessary to modify the Westergaard equation to reflect this
effect. It is necessary to modify the Westergaard equation by
substituting adummy variable in place of area variable. The
opening half-width variable "a" is the proper choice for the
substitution.” Solving for "a" inK,,,, and substituting it into the
Westergaard equation as a dummy variable will provide the
proper stress distribution at point A. The following demon-
strates the concept.

The stress intensity factor is defined as

K " Fy/Ba. 9)

To modify the Westergaard equation, it is necessary to sub-
stitute values and solve for the unreal "a*, making it adummy
variable such that

K 2

- total

BF2

insitu

%ummy (10)

The reduced Westergaard stress distribution at point A then
becomes

FinsituX

- .
V x?& adummy

™ odifying F would result in the stress distribution leveling to avalue

Fnodified (%)~ (12)

Kiota ™ Kingtu & Kyiga- (8 below thein situ stress.
y
A
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Figure 9.—Yielded pillar modeled as a continuous set of point forces.



LONGWALL GOB

The technique used to model longwall gob is similar to
that for theyield pillar. An assumption can be made that the
center of the gob isin contact with the roof and floor and the
material is compacted completely. Due to symmetry, it is
necessary to model only one-half the gob width to determine
its effect on the stress intensity at the tip of the opening.
Therefore, the opening extends from the gob center to edge of
the gate pillar at point A (figure 10). Theresidual strength of
this material is a function of the amount of compaction.
Because the center of the gob has the greatest compaction, it
has the greatest residual strength; the outside edge of the gob
has the least. To simulate gob material, the point forces are
high in the center of the gob and low at the edge. Originally,
the following example was formulated using U.S. customary
unitsof measurement. Conversion to the metric system makes
some values appear awkward.

As usua, the aorigin and x-origin begin a a point
equidistant from point A and the gob center. The point forcesto
the right of the origin (i.e., %x side) would use equation 5 to
analyze the effect a point A; the point forces to the &x side of
the origin will use equation 6. "Derive—A Mathematical
Assistant"® is used to solve for the integral in each equation.
Included in table 1 are the input variables and resultant stress
intensity factors for the gob depicted in figure 10. The gob
materia inthemode isdivided into six sections, each reflecting
adifferent yield strength (YS, to YS;,)). Thefirst three sections
arein the &x side (K side) of the origin; the other three arein
the %x side (K, side). The location of the section determines
which point-force equation to use. Thetotal effect of thegobis
the summation of the K-valuesfor al six sections:

Koo ™ Ky % Ky % Ky % K, % Ky % K. (12)

Thisvalueissubtracted fromtheK, 4, vaue (the stressintensity
for thelarge opening without the gob material in place) to obtain
the proper stressintensity factor at point A. Therelationis

Ktotal ) Kins’tu & Kgob' (13)
EXAMPLE

Below is an example that demonstrates the technique. It
analyzes the effect from two sections of the complete model
shown in figure 10. These particular sections (sections 3 and
4) were chosen to illustrate forces on either side of the axis
origin. The point forcesin section 3 align in the &x direction;
thosein section 4 are in the %x direction. The stressintensity
factor will be determined using a combination of equations 5
and 6. Table1 liststhe results from the complete analysis.

8Derive—A Mathematical Assistant,” Soft Warehouse, Inc., 3660
Waialae Ave., Honolulu, HI.
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Input Parameters:

Width of longwall face * 232 m

1/2 width of longwall face = 116 m

2a (width of longwall face plus gate entry) * 122 m
a"61m

Fisw - 13.8 MPa

Section 3:

Theyield strength for section 3isF, * 12.4 MPa. It occupies
the &x portion of the a-axis for the 0- to (&)18.3-m segment.
The effect on the stress intensity at point A dueto section 3 of
thegobis

F 18.3
K. = _Js a&x dx
m a% x
* yBa ) \ax
. 124 % | 618 x &
J/B6T ™\ 61%x
141

NOTE: Although thepoint forcesareinthe-x region, thelimits
of theintegral are from 0 to (%)18.3 m.

Section 4:

Theyield strength for section4isF,, * 10.3MPa. Thissection
occupies the %x portion of the a-axis for the 0- to (%)18.3-m
segment. The effect on the stress intensity at point A due to
section 4 of thegob is

E 18.3 0
K4' ys " a% x dx
VyBa T a& x

183
« 103 61% X dx
/B61 61& X
" 159

"Derive—A Mathematical Assistant” solved both of these
integrals. Thesolutionsyield arather cumbersome equationthat
is impractical to include in this paper; however, it can be in-
corporated into spreadsheet software or computer code. Table1
includes the K factors for all six sections of the longwall gob.
The effect on the stress intensity factor at point A caused by al
six sectionsis

Ko ™ Ky % Ky % Ky % K, % K % Ko
Koo ™ 13.8% 10.7 % 14.1% 15.9% 18.0% 25.8
Kgop ™ 98.3
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Table 1.—Input variables and stress intensity factors for each section of the longwall panel
depicted in figure 10

Section 1 Section 2 Section 3 Section 4 Section 5 Section 6
e | 13.8 13.1 124 10.3 8.3 6.9
X-range, m............. 61.0-36.6 36.6-18.3 18.3-0 0-18.3 18.3-36.6  36.6-55.0
Stress intensity at point A
(%xside) ............. — - 15.9 18.0 25.8
Stress intensity at point A
(&xside) ............. 13.8 10.7 14.1 - — -
Kaop « v vvvee 98.3 - - — -
Input parameters:
Width of longwall face * 232 m
1/2 width of longwall face * 116 m
2a (width of longwall face plus gate entry) * 122 m
a“6lm
Fisiu - 13.8 MPa
A
) < X +X >
4 + A YSQ
i
] YS, Y
B a2
‘ AAA
| ) O i
1«7—'—1/2 Gob W|d1h N ‘
- 200ft, —»<— 180ft. »< 20ft. »
Not to :
~ Scale >
<« 20 >

Figure 10.—Longwall gob simulated as point forces of different strengths.

Equation 4 determines the stress in absence of the gob (point
forces) as

|ns1tu |nstu\/_a
Kingu ™ 13.8/B61

K. . "191.0

insitu

It isnecessary to reducethisintensity to reflect the addition of
the gob material. The stress intensity factor at point A now
becomes

Ktotal ) Kinsitu & Kgob
Kia = 92.7

The dummy variable used to relate this stress reduction to the
Westergaard equation is

2
- Ktotal

BF2

insitu

adummy

(92.7)?

Phammy B(13.8)2

Bummy "14.4m

The modified Westergaard distribution at point A becomes

F . X
Fnodified(X) ™ Zm;tuz
V X“& Bgummy
. 13.8x
Fnodified(X)

Vx2&14.42



Thisisthegeneral technique used to model longwall gob. Luo
significantly improved the above technique and developed a
computer program to model the stability of longwall chain
pillars [Kramer et al. 1998].

HYDROSTATIC FORCES
Itispossibleto measuretheeffect of hydrostatic forceson
the coal seam. A hydrostatic force actswith equal strengthin

all three cardinal directions. It is similar to the pressure ex-
erted from water or gas. To simulate a hydrostatic force, it is

AN
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necessary to fill the entire mine opening with a continuous
distribution of point forces (figure 11). In order to test the
hydrostatic effect, the point forces are set equa to the in situ
stress (13.8 MPad). This situation should have the effect of
flattening the stressdistribution at point A to alevel equal to the
in situ stress.

Figure 12 isaplot of the stress distribution. It can be seen
the distribution is almost uniform and equivalent to the in situ
stress. This further demonstrates that the point-force method
accurately describes the effective stress distribution at the mine
rib.

KA
B |

Y
Qs <« X +X—>»
\\\;\ \ A A + *
1T i .
5 : : |
O l
‘4 2a >

Figure 11.—Crack opening completely filled with point forces equal to the in situ stress.

Crack Opening Filled with Point Loads
Equal to the In situ Stress
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Figure 12.—Stress distribution at point A is nearly flat and equal to the in situ stress.
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TECHNIQUE TO COMBINE DIFFERENT
MINE SUPPORTS

It is possible to combine any type of mine supports and
predict the resultant stress distribution in the coa seam.
Figure 13 presentsatypical mining environment combining the
following structures. alongwall gob, ayield pillar, and acrib.
Analyzing thisarrangement requiresacombination of the stress
intensity factors for each support member. This combined
valueisused to reducethetotal stressintensity at point A. The
procedure for doing thisis asfollows:

Calculate K, for point A
Calculate K, for point A
Calculate K44 for point A
Calculate K, for point A

» Combine the stress intensity factors for each support,
and usethisvalueto reduce the stressintensity associated with
the entire opening width:

Ktotal ) Kinsitu &K & Kyie!d & Kcrib

gob

EVALUATING PILLAR YIELD

Because coa mines are often located at a great depth
below the surface, the stress levels often exceed the yield
strength of the coal. It isnecessary to account for yieldingin
thecoal pillarsto correctly assessstructural stability. Fracture
mechanicsis useful in predicting the yielding characteristics
of the codl.

The Westergaard equation introduces asingularity at the
pillar edge. Thisiswhere the stress distribution approaches
infinity. The pillar edge yields and redistributes the loading
in order to eliminate the singularity. The yielded zone
continuesto offer residual support to the roof and floor.

Dugdale provides a way to estimate the length of this
yield zone in the pillar [Dugdale 1960; Broek 1982]. The
following sectionsdescribe how to determinethe extent of the
yield zone. Also described is a way to predict the stress
distribution in the elastic core of the pillar. First, the basic
technique used by Dugdae to arrive at his yield zone
prediction isreviewed. Later, atechnique isintroduced that
determines the extent of the yield zone specifically in coal.

THE EFFECT OF POINT LOADING ON THE
STRESS INTENSITY AT THE CRACK TIPS

Asmentioned previoudy, figure8 depictsacrack with an
internal wedge force P pushing out against the crack surface.
Thisforce P is at a distance x from the crack center. These
wedge forces affect the stress intensity function, K, at points
A and B. Itis possible to use equations 2 and 3 to predict
these stressintensity factors, K [Parisand Sih 1965]. A form
of these equations is fundamental in the development of
residua forces supporting the roof and floor in the yielded
portion of the pillar.

DUGDALE'S APPROACH TO CRACK TIP
YIELDING

Although the pillar edgeyields, it hasaresidua strength
that supportstheroof and floor of the coal seam. Imaginethis
residual support as a continuous distribution of dislocated

point forces (figure 14). Dugdale determined the extent of the
yielded zone by first assuming that the residual strength of each
point forceisequal to theyield strength, F, of amaterial (inthis
case, coal) [Dugdale 1960; Broek 1982]. Because the yielded
edge is significantly weaker, it would seem as though the mine
opening becomes wider. The mine opening would theoretically
extend into the pillar to the point where yielding stops. At this
point, the singularity disappears because of the canceling effect
of theresidua stressintheyield zone. The effective minewidth,
ay - a% D, represents the distance to the new elastic crack tip,
where D symbolizes the extent of the yielded zone.

Theyielded zone, D, exertsaresidual stressequal totheyield
stress, F,, The yield zone, D, depicted as additional opening
width, isnot really an opening; thematerial can till bear theyield
stress. The size of D is chosen so that the stress singularity
disappears: K,,, approaches zero. This means that the stress
intensity, K4, due to the uniform in situ stress, F, has to be
compensated by the stressintensity, K, dueto theresidual wedge
forces F,[Broek 1982]. In other words:

Kinsta ~ &Kp (14)

Satisfying equation 14 leads to the determination of D in the
following manner. Equations 2 and 3 describe how a point load
affects the stress intensity factor, K. If the wedge forces are

distributed from s to the effective crack tip, the stress intensity
becomes

K~ P ? a%x% a& X dx (15)
/Ba M\ a&x a%x '

Solution to thisintegral is

K™ 2P\J7E cost S (16)
B a
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Figure 13.—Modeling various support structures using the point-force technique.
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Figure 14.—Continuous point forces approximate the residual pillar strength in
yielded zone preceding the elastic crack tip.

Applying this result to the crack in figure 14, the integral

hasto betakenfroms ™ atoa ™ a%D. Thus, "a" hasto be

substituted for "s" and "a% D" for "a" in equation 16, while

Pequastheyield strength, F, [Broek 1982]. Thisleadsto

the determination of the yield zone as
D B%F%a ’

2
8Fys

(17)

where D isthe extent of the pillar yield zone.

Dugdal€e's description of the yield zone does not
provideasimpleway to predict the stressdistributionin the
elastic core adjacent the yielded edge. Irwin presents a
method to predict the stress distribution in the eastic
portion of the pillar [Broek 1982]. Irwin describesayield
zone that is similar in length to Dugdal€'s prediction;
however, the crack tip extends only one-half the distance
(figure 15).

Thesingularity vanishesif areaA " areaB. Itwaspossible
to verify this using spreadsheet software. It is particularly
accurate for values of F/Flessthan 0.75. Irwin's description
produces the stress distribution shown in figure 16. This
distributionisnot representativewithin situ measurementstaken
at underground mines [Mark and lannacchione 1992].

PLAIN STRAIN

Dugdale's method concerns conditions of plane stress.
Pillar analysisreguiresaplanestrain condition. Studiesindicate
that for the case of plain strain, the effective yield stress can be
as great as three times that for a similar plain stress analysis.
This is due to confinement, which increases the triaxia yield
strength. Broek suggests modifying the yield stress with the
constraint factor:

p.cf. = 1.68F, (18)
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Figure 15.—The Westergaard distribution originates at the beginning of the Irwin zone, but does not take

effect until the beginning of the elastic zone.

Coal Pillar

Figure 16.—Pillar stress distribution as predicted by the Dugdale-Irwin method.

THE DUGDALE-IRWIN METHOD AS IT RELATES TO
A MINE ENVIRONMENT

Previousresearch indicatesthat confinement increasesthe
yield strength of a pillar core [Crouch and Fairhurst 1973;
Karabin and Evanto 1999; Sih 1966; Salamon and Munro
1967]. However, the measured pillar stress distribution does
not resembl ethedistribution predi cted by Dugdale-1rwin shown
in figure 16. Underground measurements show the residual

strength should be low at the wall of the mine opening, but
increase proportionaly with the distance into the pillar
core.

The mathematical model predicted by Dugdale-lrwinis
accurate; only the visual perception is misleading. The
residual stress distribution in the yielded area can take on
any shape as long as area A equals area B (figure 17).
A morerealistic stress distribution such as that in figure 18
should then be possible.
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Figure 18.—Possible contour of pillar stress using the Dugdale-Irwin method.

COMBINING EMPIRICAL METHODS INTO THE ANALYTIC ANALYSIS

The Westergaard equation introduces a singularity at
the pillar edge; thisis where the stress approaches infinity.
To eliminate this singularity, the edge must yield and
redistribute the load. The yielded edge retains a residual
strength that offers confinement to the core.

In situ field measurements demonstrate a nonlinear
residual stressdistribution in theyield zone of acoal pillar.
The stressislow at the pillar rib and increases rapidly into
the center of the pillar. This indicates that confinement
makes the pillar strength higher than the unconfined
compressive strength used by Dugdale-Irwin. Itispossible
to usethe point-force method to model thisresidual strength
and thus predict the extent of the yield zone. It is a
common numerical technique to study the yielding coal

with astrain-softening model [ Crouch and Fairhurst 1973; Wil-
son 1972]. Figure 19 depicts amodel in terms of stress versus
strain in atimeframe denoted by peak and post (residual) stress.
It is possible to use any of the popular pillar strength
equations to predict the strain-softening characteristics of the
coa. The equations of Bieniawski and Holland-Gaddy are the
most accepted of theseequations[Mark and lannacchione 1992].
Mark and | annacchione devel oped an equation that representsan
average of these two equations. It predictsthe pillar strength as
afunction of distance from the opening. Thisequationis:

F ()" S, ><[0.78% 1.74%] , (19)
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Figure 19.—The stress-strain characteristics in the yield
zone of a coal seam.

where F, ® pesk stressat distance x, MPa,
S, " insitucoal strength, MPa,
x " distanceto the freeface, m,
and h =

seam height, m.

It is possible to model the stress distribution in the yield
zone as a series of point forces (figure 20). These

peak
. stress
= _
o residual
8 stress
7 s
AXL %A
N ‘
| TT
Group 1 Group 2 Group 3

strain (in./in.)

Figure 20.—It is possible to model peak or post stress as
several groups of point forces.

continuous series of point forces has a uniform intensity
within each group. Equation 19 will predict the average
strength assigned to each group. It is necessary to use an
iterative technique to determine the extent of theyield zone.
This iterative technique progressively yields each group
whiletesting for the disappearance of the singularity. When
Kp $ Kiws theyielding stops. Luo has eliminated the need
for an iterative technique by providing the exact solution for
the equation [Kramer et al. 1998].

EXAMPLE: USING STRAIN-SOFTENING TO DETERMINE THE EXTENT
OF THE YIELD ZONE

Origindly, this example was formulated using U.S.
customary units of measurement. Conversion to the metric
system makes some values appear awkward.

GROUP 1: 0-2mINTO THE PILLAR
Input Parameters:

S, " 35MPa

Fisw - 6.9 MPa

Entry width (2a) " 6 m
a"3m

Extension of group1(e) " 2m
h®2m

By - A% € " 5m

Thefirst group of point forces simulates the post strength
for group 1, which is the first 2 m into the pillar

(figure 20). These point forces are uniform; therefore, it is
necessary to use equation 19 to determine an average
strength value. Thisvalue will be assigned the point forces
in group 1. An estimate of the average point force for
group 1 would be determined from equation 19 for a point
1 minto the pillar.

Fag " F1M) 3.5( 0.78% 1.74%) " 5.8MPa

The stress intensity relating to this average point force is
taken from equation 15 as

A
K - Favg f aEff%X % aeff&x dx .
Pous J/Bay M Byp & X Byr X




Equation 16 solvesthisintegral as

Kos., ™ 2Fag Pt ot 2
1 B aeff
- 5 13
Kps, " 2(58 5 cos* G
" 136
Kosoa  Kosi,
" 13.6

The stress intensity for group 1 in absence of the point forces
is

K, * 69/BE%2)
*27.3

Kostoa 1S 1€8S than K ,; therefore, this section is yielded and
the crack extends to the end of the next section (group 2). The
coal continuestoyield until theresidual pillar stressovercomes
thein situ Westergaard stress.

GROUP 2: 2-4mINTO THE PILLAR
Input Parameters:

e "2m

A oM

B A NETTM

Midpoint of group 2 is 3 minto the pillar

The crack tip is extended 4 m (i.e,, e, % &) to the end of
group 2. This makes a,, the effective crack tip, equal to 7 m.
Using equation 19, the average stress in this section is
11.9 MPa. Thisisthe post strength determined for alocation
3 minto the pillar. The stressintensity caused by the wedge
forcesingroup 2is

- 7 1 5
Kes,, 2(11.9J7E cos® =

" 275

Itisnecessary to also consider the stressintensity caused by
the residual point forces in group 1. Because the crack tip
extended into the 2-to 4-m (group 2) section of theyield zone,
it is necessary to recaculate the effect of the 0- to 2-m
(group 1) section of the yield zone:
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5
0
K" 5.8 ) [\j 79X o J 7§¢x) "
2 B7 T 7&X 7% X
"Derive—A Mathematical Assistant” determined this value
to be:

PS;,

The total stress caused by the point forcesis

- 0
Kpsrota Kpsz‘z b Kpsl.Z

" 33.6

The stressintensity caused by the crack extension to theend
of group 2 in absence of the residual point forcesis

K,,, " 6:9/BB%2)

" 323

Thisstressfactor islessthanthe stressintensity dueto the
residua strength point forces (K, < K ow); thus, the
yielding ceases in group 2. Because the values are nearly
equal, the crack extended almost to the end of group 2 (i.e.,
4 mintothepillar). Itispossibleto refine this distance, but
it is unnecessary for this example. Equation 19 will predict
the stress distribution in the yield zone; the Westergaard
equation will predict the distribution in the elastic core.

Irwin suggests away to use the Westergaard equation to
predict thestressdistributioninthepillar'selastic core (at the
edge of the yield zone) [Broek 1982]. Irwin agrees with
Dugdal€'s prediction for the extent of the yield zone, but he
argues that the crack tip extends into this zone one-half the
distance predicted by Dugdale such that

* ® D/2 ® 2m (in the previous example).
Thisincreases the effective crack width to
8y " A* " 5mM.

Thisisthe beginning of the Irwin zone—the region from
which the Westergaard equation predicts the stress
distribution into the core of the material (figure 21).

Extending the crack tip to the beginning of thelrwin zone,
the Westergaard equation becomes

F

F - insitu

Irwinzone ~— ———
VX2 & (a% *)?

X
(21)
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Although the x-origin in the Westergaard eguation 19 describes the stress distribution throughout the entire yield
begins in the Irwin zone, the stress distribution does not ~ zone. Figure 22 shows the stress distribution for the combined
take effect until the beginning of the elastic zone. Equation  strain-softening and analytic models.
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Figure 21.—The Westergaard equation begins in the Irwin zone; it takes effect in the elastic
zone.
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Figure 22.—Strain softening in the process zone and a Westergaard distribution in the elastic zone.
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SUPERPOSITION

A mine opening affects the stress distribution at each of
its sides. A mine panel is a gridwork of regularly or
irregularly spaced entries and crosscuts.’ For a complete
stress analysis, it is necessary to consider the stress influ-
ences caused by every mine passageway. A superposition
technique makes this possible [Kramer 1996].

The superposition technique requires subdividing the
stress distribution into its constitutive components
(figure 23). Each side of the pillar is subjected to a

°An entry is a tunnel aligned in the main direction of mining.
A crosscut connects individual entries, usually at aright angle. Several
entriesand crosscuts compriseaminepanel. A pillariscoa remaining in
place between two entries and crosscuts; it supports the mine roof.

Westergaard stress distribution. Restricting the pillar model to
two dimensions, as in the case of plane strain, limits these
distributions to the left and right sides of the pillar. The basic
components needed in the superposition are the uniformin situ
stress, the stress component from the left opening, and the stress
component from the right opening. The right and left stress
componentsare each equal to the Westergaard equation withthe
in situ stress removed such that

= + FinsitX &F

component insitu*
Yx?&a?

(22)

< 20—

X €—

Figure 23.—Pillar stress broken down into three components.
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The left stress component has the origin of its axis
located to the left of the pillar. The positive direction, rel-
ativetothisaxis, isrightward from the origininto thepillar.
The right component is the mirror image of the left. This
component hasthe origin of itsaxisto theright of thepillar.
Thevariable"a" can have adifferent value for each side of
the pillar (figure 23). The total stress distribution on the
pillar is equal to the left component plus the uniform

in situ stress plus the right component. As verified by FLAC,
the superposition technique accurately predicts the stress
distribution across asingle pillar (figure 24).

A mineopening affectsthestressdistributionfor asubstantial
distance. A mine pand consists of a gridwork of entries and
crosscuts. It isnecessary to superimpose the stress components
from all mine passageways. FLAC compares the results of the
superposition across an entire mine panel (figure 25).

Superposition Technique Across a
Single Pillar

40.0
2 300 T
= 20.0
8 - *_.;\éTLejga’@Eﬁ
£ 10.0 -
2 0.0 |
0.0 10.0 20.0
Distance From the Left Opening (m)
Figure 24.—Pillar with stress superimposed from both sides.
Superposition Comparison
35

Stress (MPa)

00 50.0

100.0 150.0

Distance Across Panel (m)

Figure 25.—Westergaard equation and superpositioning stress over an entire mine panel.

Comparison with numerical model.
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POSSIBLE ENHANCEMENTS

It is possible to enhance the modeling capabilities of the
FMA. Adding other techniques would give the ability to
analyze displacementsin the strata, creep behavior in mine
supports, and the effects of multiple-seam mining. Because
the FMA is straightforward and easy to use, there is
potential to model many different mining situations.

The following sections discuss some possible additions
totheFMA. Although each technique presented seemsrea
sonable, no comparison has been made with numerical
analysis to qualify accuracy.

VIEW OF STRESS DISTRIBUTION FROM A
PLANAR PERSPECTIVE

Sometimesit is desirable to study the stress distribution
looking down on the coa seam (planar view) instead of into
it (cross-sectional view). Inaplanar view, coal pillars are
rectangular. Thecornersof thepillar generate mathematical
singularities that create problemsfor analysis. Oneway to

eliminate the singularities is to assume the pillar is an ovaloid
instead of arectangle [Kramer 1996]. It is possible to segment
the pillar into concentric ovaloid lines of equal distance (fig-
ure 26). Fracture mechanics predicts the stress distribution
through the pillar centers, as indicated by the vertical and
horizontal linesin figure26. Aninterpolation technique can ap-
proximatethe stressthroughout thepillar by using the concentric
ovaloid arcs as interpolation pathways. For instance, the arc
segment between points A and B in figure 26 would be the in-
terpolation path between the stresses at points A and B. It is
easy to interpolate the stresses along ovaloid paths. The basic
equations for mapping elliptical coordinates to Cartesian
coordinates are:

X " acos?2
y " bsin2 (23)

An example of the interpolation process follows.

Figure 26.—Fracture mechanics predicts the center stress in both directions through the
pillar. An interpolation technique translates the stress along the elliptical trajectories.
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EXAMPLE OF INTERPOLATION
Considering the elliptical path shown in quadrant | of

figure 27, interpol ate the stresses along path A-B in the outer
arc of quadrant |. For this example, assign the following
properties:

F, © 1,000 psi

Fg * 1,500 psi

a"20

b*"10

Divide 2 into five equal angles:

90 .+ 400
- 18 (24)

Determine the stress interpolation interval for each 18° arc:

1,500 psi & 1,000 psi
5 intervals

" 100 psi per interval (25)

Figure 28 illustrates the stress distribution aong this arc.
Equation 24 relates any point on the A and B axisto any point
on the ovaoid (figure 27). Therefore, it is possible to
approximatethestressdistribution throughout theentirepillar.

VISCOELASTICITY

Sih[1966] and Parisand Sih [1965] discuss crack behavior
in viscoelastic (time-dependent) material. For viscoelastic
material, the crack-tip stressfield is the same, only the stress
intensity factors K, are functions of time, such that

K, " K1) (26)

Thisfunction shows promise for future applications using the
FMA. For instance, it could be valuable for studying the be-
havior of salt.

DISPLACEMENTS

Fracture mechanics may also predict the displacement/
strain in amine environment. A common method to predict
displacement is referred to as the "crack opening
displacement” (COD) [Broek 1982]. The COD method takes
into account the total displacement of the crack surface
(figure 29). In mining, the COD predicts the combined
displacement of the roof and floor of an opening, such that

COD'2v'4—£ 2ex? @7
and at the center of the opening:
cop,, " 2v - 42 28)
Y
A I
I
/ B(0.b)
b N
, 0%,  Wa0)
a
11 v

Figure 27.—Relationship between elliptical and rec-
tilinear coordinates.
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Figure 28.—Stresses distributed along interpo-
lation arc.

i >
Figure 29.—The crack opening displacement (COD) method
considers the displacement of the entire surface of a crack.



MULTIPLE-SEAM MINING

It may be possibleto predict the effects on stress distribu-
tion caused by mining activity in seams above or below the
areaof interest. By using stressinfluencefunctionsdevel oped
for minesubsidenceprediction, it should bepossibleto predict
multiple-seam influences with a respectable degree of
accuracy
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[Luo 1997]. This multiple-seam model could be more
accurate than other numerical methods because most other
methods use influence functions based on the theory of
elasticity, which assumesinfinitesimal displacements. Using
influence functions based on mine subsidence profiles takes
into account the well-documented, large-scal e displacements
measured at various mine locations.

CONCLUSION

This paper presentsthe FMA for predicting the stressesina
mine panel. It can model any combination of mine supports
such as longwall gob, yield pillars, cribs, chocks, posts,
automated temporary roof supports, and hydrostatic loads. The
technique uses an analytic expression; thus, it is fast, smple,
and accurate. It simulatespillar yield by combining theanalytic
equation with any empirical pillar strength equations. The pro-
cedure incorporates easily into spreadsheets or computer
software. The FMA predicts pillar stresswith ahigh degree of
accuracy; however, it is no match to good numerical modeling

software. Its main function isto be quick and smplein or-
der to encourage nonspecialized personnel to use it as a
guide for studying mine supports.

The FMA works well for coal seams aligned along a
horizontal plane. Additional effort is needed to assess its
accuracy for seams aligning along inclined planes. More
work isalso necessary to devel op FM A techniquesfor thick-
seam mining, multiple-seam mining, and displacement
prediction. Computer software featuring the FMA is
available from the author.
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