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THE FRACTURE MECHANICS APPROACH TO UNDERSTANDING 
SUPPORTS IN UNDERGROUND COAL MINES

By James M. Kramer, Ph.D.,1 George J. Karabin, P.E.,2 and M. Terry Hoch3

ABSTRACT

This paper introduces the fracture mechanics approach—a unique way to predict the stability of a coal mine
panel.  The technique uses analytic equations to calculate the stress, strain, and yield characteristics of coal
support systems.  It uses fracture mechanics to model almost every type of mine support structure.  Another
feature is a method that incorporates field-tested knowledge into the analytical analysis.  For example, this
technique can model the yield characteristics of a coal seam by combining empirical pillar strength equations
into the analytic analysis.  It may be possible to simulate multiple-seam mining by incorporating subsidence
methods into the analysis.  The method is simple and quick, which makes it attractive for stress analysis
software.  It should be more accessible to those in the mining industry who do not have expertise in rock
mechanics or numerical modeling.  Although the purpose of this research is for modeling coal mines, it should
be adaptable to any mine in a tabular deposit.

1Mining engineer.
2Supervisory civil engineer.
3Chief.
Roof Control Division, Pittsburgh Safety and Health Technology Center, Mine Safety and Health Administration, Pittsburgh, PA.



116

Fy(x) ' Fx

x 2&a 2
, (1)

INTRODUCTION

This paper presents a new way to analyze the mechanical
behavior of underground coal mine supports.  Included are
analytic expressions describing the stress, strain, and yielding
characteristics of a coal seam.  The fracture mechanics approach
(FMA) provides the capability to model almost every type of
mine structure, including pillars, yield pillars, longwall gob,
chocks, cribs, posts, and hydrostatic loads.  In addition, it predicts
pillar stability by combining empirical pillar strength equations
into the analytic analysis.  This makes the procedure useful for
understanding how various support structures affect the
mechanical performance of a mine panel.

Although the method is not as sophisticated as numerical
analysis, it offers several advantages.  The analytic equation

makes it is as accurate as numerical modeling, but quicker and
easier to use.  Because of the few equations involved, it is easy
to incorporate the process into a computer spreadsheet or
programmable calculator.  Real-time design analysis is possible
by incorporating the technique into computer code.  For ex-
ample, one can change a design structure (e.g., add a crib) and
see instantly the resultant stress effect.  The coal yielding proc-
ess uses empirical pillar strength equations derived from years
of field measurements.  Combining these equations into the
analytic analysis provides insight into pillar stability.  The
system presented in this paper offers a unique perspective from
which to study mine panel stability.

DESIGNING SUPPORT STRUCTURES FOR COAL MINES

There are several ways to analyze the stability of a mine
layout.  The easiest and, in some cases, most reliable is to use
pillar strength equations.  These equations are developed from
extensive knowledge of coal seam behavior [Mark and Iannac-
chione 1992].  Most are based on physical stress measurements;
however, some come from numerical studies or analytic
equations.  All of these methods use the pillar width-to-height
ratio as the controlling factor.  These strength equations can be
accurate; however, they assume that the coal pillar is the single
means of support.  It is not possible to study the effects of cribs,
posts, longwall gob, chocks, etc.  Also, these equations do not
predict the stress distribution through the panel, nor do they
predict the extent of the yield zone in the coal.

There are other, more accurate, ways to analyze stability.
Numerical modeling, if used properly, can be very accurate.  It

can predict the stress distribution throughout the entire mine
environment, including the coal seam, surrounding strata, slips,
faults, and all types of supports.  However, this method is time-
consuming and requires a certain amount of technical skill.  For
example, using finite elements, it would take a skilled engineer
a day or more to analyze the yield zone in a coal pillar based on
data derived from field measurements.

This paper discusses a simple, quick, and accurate solution
for predicting the stress distribution in coal pillars and other
structures.  It uses a combination of fracture mechanics and em-
pirically derived techniques to predict the extent of the yield
zone in a coal pillar.  It can model nearly every structure used
for mine support.  Numerical modeling will validate the ac-
curacy of the technique.

THE FRACTURE MECHANICS APPROACH

Understanding the FMA requires visualizing a coal seam
as an extremely thin layer in the stratum of the Earth.  A tunnel
or opening in the coal would appear as a thin crack in an
infinite mass.4  It should then make sense that it is possible to
use the mechanics of cracks to analyze the stresses surrounding
openings in coal seams.

Visualizing a mine opening as a crack is not new; others
applied it to their research [Barenblatt 1962; Hacket 1959;
Crouch and Fairhurst 1973; Berry 1960, 1963].  However, this
paper describes a way to use the fracture mechanics directly to
predict pillar stress.  Combined with a superpositioning

4In this paper, the term “crack” infers a mine opening and vice versa.

Therefore, crack-tip stress is the same as rib or pillar stress.

technique, it is possible to obtain the complete stress distribution
throughout the mine panel.  A yielding technique completes the
analysis by offering realistic characteristics to the coal pillars.

Westergaard's equation is fundamental to fracture me-
chanics theory and is also the basic equation for the FMA
[Westergaard 1939].  The stress distribution at the crack tip is
identical to the distribution adjacent to a mine opening.
Westergaard describes the stress at the tip of a crack as
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Figure 1.CCCrack of width 2a subjected to a uniform biaxial
stress field.

where Fy(x) ' stress distribution adjacent to a crack tip,

a ' 1/2 the crack width,

F ' in situ stress,

and x ' distance from the center of the crack.

This equation implies that the only parameters needed to
predict elastic rib stress are the entry width and the in situ stress
(figure 1).  Westergaard derived equation 1 by assuming that
the stress field acting on the crack is located at an infinite
distance from the crack surface.  Another assumption is that the
crack width must align with the planes of this stress field.  In
general, these conditions are similar to a mine environment.
The Westergaard equation will accurately predict the stress
distribution into the coal seam provided that the analysis
remains within the elastic range.

NUMERICAL METHODS VALIDATE THE
WESTERGAARD EQUATION FOR MINE ANALYSIS

Westergaard developed his stress function by making the
following assumptions:  the crack has a thickness of zero; it is
contained in an infinite, homogeneous plate; and the plate is
subjected to a uniform biaxial stress field.  These conditions
match fairly the conditions encountered in a coal mine opening.
There are differences, however.  A mine opening has an actual
thickness.  The structural properties of the coal differ from
those of the surrounding rock mass.  Also, a coal mine's
environment is under the influence of a graduated, nonuniform,
biaxial stress field controlled by gravity.  It is necessary to con-
sider all of these factors to validate the FMA.  Previous research
demonstrates the accuracy of the FMA by comparing it to
numerical modeling output [Kramer 1996].  It is shown that the
technique matches the numerical modeling predictions with a
high degree of accuracy.

Figures 2 through 7 are plots that compare the stress
prediction of the FMA with that of numerical modeling.  The
purpose is to show how well the FMA can predict stress even
in conditions less ideal than those used by Westergaard to
derive equation 1.  Such conditions are similar to those en-
countered in an underground coal mine.  All of the evaluations
use FLAC5 as the numerical modeling software.  Spreadsheet
graphs are used to compare the FMA stress prediction with that
determined by FLAC.  Each demonstrates that the FMA com-
pares reasonably well with the FLAC model for varying con-
ditions of nonhomogeneity.  Initially, the model is homo-
geneous and simple.  The FMA matches extremely well with
the numerical model [Kramer 1996].  Then, in order to
introduce nonhomogeneity into the numerical model, each

5 Fast Langrangian Analysis of Continuum, Itasca Corp., Minneapolis,
MN.

individual structural property is altered independently and the
results are compared with the FMA.  Finally, an evaluation is
made between the FMA and a nonhomogeneous numerical
model consisting of strata with properties even more variant
than an actual mine environment.

Figure 2 charts the comparative stress predictions between
the FMA and FLAC for a simple, elastic, and homogeneous
model.  Note that the stress distributions are nearly exact.  The
only real difference is at the edge of the mine opening.  This
difference is due to the approximation technique used in nu-
merical analysis.  The model in figure 3 has the same homo-
geneous properties as those for figure 2; it plots the stress
distribution through various planes in the coal seam.  This il-
lustrates that the distribution, at any plane, remains consistent
with the distribution through the center plane of the seam.
Figures 4 and 5 demonstrate that the coal's modulus of elasticity
or Poisson's ratio has little effect on the stress distribution
through the center plane of the coal seam.  The next step is to
compare the accuracy of the FMA for predicting the stress of a
nonhomogeneous numerical model.  Figures 6 and 7 relate the
results of the simulation.

Figure 6 shows the comparison between FLAC and the FMA
for the stress distribution produced in a graduated, nonuniform,
biaxial stress field similar to that encountered in an underground
mine.  For these studies, the horizontal stress is 0.3 times the
vertical stress.  The design of the model places the coal seam at
a depth of 381 m.  The structural parameters of the coal and rock
are equivalent.  This study also compares the Westergaard equa-
tion to the stress at various planes in the seam (figure 6).

It can be seen that the nonuniform stress field in the nu-
merical model causes a deviation in stress from the Westergaard
prediction; however, most of the difference is near the edge of
the mine opening.  In this portion of the mine rib, the coal is
yielding.  Analytical methods do not exist for predicting the
stress distribution in this region.  Introduced later in this paperis
a method that uses field measurements to describe the stress
distribution in the yield zone of a coal rib.
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Figure 2.CCStress distribution in a coal seam next to a mine opening: comparison between numerical
analysis and the Westergaard equation.  Homogeneous model.

Figure 3.CCStress distribution at various levels in the coal seam.  Properties similar to the model
in figure 2.
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Figure 4.CCStress profile for coal with different moduli.  Four separate FLAC models.

Figure 5.CCHow the Poisson ratio affects the stress distribution.  Three separate FLAC models.
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Figure 6.CCThe effect of a graduated, nonuniform biaxial stress distribution similar to conditions
underground.  Stress profile at various levels in the seam.

Figure 7.CCComparison of a model simulation of a real mine environment.
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Figure 8.CCCrack with wedge forces at x.

The numerical model described below will validate the
FMA's ability to analyze structural variations found in a real
mine environment.  In this model, the strata are nonhomo-
genous.  In addition, the surrounding stress field is variable in
both the vertical and horizontal planes.  Such a model has
structural variations greater than those encountered in most coal
mines.  The surrounding rock mass has a Young's modulus of
27,580 MPa and a Poisson's ratio of 0.2.  The unit weight of
this mass is 0.03 MN/m3.  The coal seam has a Young's
modulus of 3,448 MPa, a Poisson's ratio of 0.3, and a unit
weight of 0.03 MN/m3.  The unit weights are high to enhance
the stress comparisons by increasing the effect of gravity

loading.  To show the effect of mining in an area subjected to
a high stress field, the model is initialized with a premining
stress prior to adding the mine opening.  Adding a mine
opening to a model with a high biaxial stress field already
in place would alter the stress in the areas adjacent to the mine
opening.  Figure 7 compares the Westergaard equation to
FLAC's analysis for different levels in the coal seam.  The
distributions vary considerably; however, most of this deviation
is near the mine opening.  In this area, the coal will yield.
A technique will be presented in this paper that describes the
stress distribution in the yield zone of the coal.

THE POINT-FORCE METHOD USED TO SIMULATE MINE SUPPORTS

An essential concept of the FMA is the process by which
a point force, acting on the surface of the crack, affects the
stress intensity at the crack tip.  In mining, this point force
could be a mine post or hydraulic jack.  A continuous series of
point forces can model a yield pillar, longwall gob, the yield
zone of the pillar, or any other type of mining supports [Kramer
1996].  Figure 8 depicts a crack with an internal point force,
P, pushing out against the crack surface.  This force P is at a
distance x from the crack center.  This force affects the stress
intensity factor K at points A and B.  The point force is similar
to the loading from a single-point mine support, such as a post
or hydraulic jack.6

Green functions are used to predict the stress intensity
factors [Paris and Sih 1965].  The factors are:

where KA ' stress intensity at point A,

KB ' stress intensity at point B,

P ' point force,

a ' 1/2 the opening width,

and x ' distance from opening center

6The stress intensity factor is of utmost importance in the study of
fracture mechanics.  It is a measure for the stress singularity at the crack tip.
For the case of uniaxial compression with force P at infinity, K must be pro-
portional to P.  KA and KB must also be proportional to the square root of a
length.  For an infinite object, the only characteristic length is the crack size;
thus, K must take the form:  K ' F/(Ba).

YIELD PILLARS

Yield pillars are common in longwall mining; they control
floor heave and/or fine tune roof behavior.  As the name
implies, the pillars yield, thus redistributing the load around a
control area in the mine.  It is possible to model yield pillars as
a continuous series of point forces.  Equations derived from
in situ pillar strength measurements can determine the
intensities of the point forces.  However, for the present
discussion, the point forces are considered uniform and equal
to the yield strength of the coal (figure 9).

To illustrate the method, it is necessary to discuss only the
stress effect at a single crack tip (e.g., point A in figure 9).
Either equation 2 or equation 3 can describe the stress intensity
at point A.  The correct equation to use depends on the location
of the point forces with respect to the a-origin.  In the
discussion below, the location of the point forces (figure 9) is
chosen to provide the most complete example of the technique.
Because the locations of the point forces are equally distributed
on both sides of the origin, solution to the stress effect at
point A requires using a combination of equations 2 and 3.  In
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Figure 9.CCYielded pillar modeled as a continuous set of point forces.

absence of the yield pillar, the stress intensity at point A is
[Dugdale 1960]:

The yield pillar will act to reduce this intensity.  The a-origin
is located in the center of the point forces; thus, the distribution
in the &x side is equal to the distribution in the %x side
(figure 9).  The stress intensity factor at point A caused by the
continuous point forces on the %x side of the origin is

The stress intensity factor at point A caused by the continuous
point forces on the &x side of the origin is

The stress intensity factor for the yield pillar becomes

Kyield ' K%x % K&x. (7)

With the yield pillar in place, the stress intensity factor at
point A becomes

Ktotal ' Kinsitu & Kyield. (8)

The Westergaard equation relates rib stress to the in situ
stress and the width of the opening.  Because Ktotal includes not
only the in situ stress but also the effect of the yield pillar, it is
necessary to modify the Westergaard equation to reflect this
effect.  It is necessary to modify the Westergaard equation by
substituting a dummy variable in place of a real variable.  The
opening half-width variable "a" is the proper choice for the
substitution.7  Solving for "a" in Ktotal and substituting it into the
Westergaard equation as a dummy variable will provide the
proper stress distribution at point A.  The following demon-
strates the concept.

The stress intensity factor is defined as

To modify the Westergaard equation, it is necessary to sub-
stitute values and solve for the unreal "a", making it a dummy
variable such that

The reduced Westergaard stress distribution at point A then
becomes

7Modifying F would result in the stress distribution leveling to a value
below the in situ stress.
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LONGWALL GOB

The technique used to model longwall gob is similar to
that for the yield pillar.  An assumption can be made that the
center of the gob is in contact with the roof and floor and the
material is compacted completely.  Due to symmetry, it is
necessary to model only one-half the gob width to determine
its effect on the stress intensity at the tip of the opening.
Therefore, the opening extends from the gob center to edge of
the gate pillar at point A (figure 10).  The residual strength of
this material is a function of the amount of compaction.
Because the center of the gob has the greatest compaction, it
has the greatest residual strength; the outside edge of the gob
has the least.  To simulate gob material, the point forces are
high in the center of the gob and low at the edge.  Originally,
the following example was formulated using U.S. customary
units of measurement.  Conversion to the metric system makes
some values appear awkward.

As usual, the a-origin and x-origin begin at a point
equidistant from point A and the gob center.  The point forces to
the right of the origin (i.e., %x side) would use equation 5 to
analyze the effect at point A; the point forces to the &x side of
the origin will use equation 6.  "Derive—A Mathematical
Assistant"8 is used to solve for the integral in each equation.
Included in table 1 are the input variables and resultant stress
intensity factors for the gob depicted in figure 10.  The gob
material in the model is divided into six sections, each reflecting
a different yield strength (YS1 to YS6).  The first three sections
are in the &x side (KB side) of the origin; the other three are in
the %x side (KA side).  The location of the section determines
which point-force equation to use.  The total effect of the gob is
the summation of the K-values for all six sections:

Kgob ' K1 % K2 % K3 % K4 % K5 % K6. (12)

This value is subtracted from the Kinsitu value (the stress intensity
for the large opening without the gob material in place) to obtain
the proper stress intensity factor at point A.  The relation is

Ktotal ' Kinsitu & Kgob. (13)

EXAMPLE

Below is an example that demonstrates the technique.  It
analyzes the effect from two sections of the complete model
shown in figure 10.  These particular sections (sections 3 and
4) were chosen to illustrate forces on either side of the axis
origin.  The point forces in section 3 align in the &x direction;
those in section 4 are in the %x direction.  The stress intensity
factor will be determined using a combination of equations 5
and 6.  Table 1 lists the results from the complete analysis.

8Derive—A Mathematical Assistant," Soft Warehouse, Inc., 3660
Waialae Ave., Honolulu, HI.

Input Parameters:

Width of longwall face ' 232 m
1/2 width of longwall face ' 116 m
2a (width of longwall face plus gate entry) ' 122 m
a ' 61 m
Finsitu ' 13.8 MPa

Section 3:

The yield strength for section 3 is Fys3 ' 12.4 MPa.  It occupies
the &x portion of the a-axis for the 0- to (&)18.3-m segment.
The effect on the stress intensity at point A due to section 3 of
the gob is

NOTE:  Although the point forces are in the -x region, the limits
of the integral are from 0 to (%)18.3 m.

Section 4:

The yield strength for section 4 is Fys4 ' 10.3 MPa.  This section
occupies the %x portion of the a-axis for the 0- to (%)18.3-m
segment.  The effect on the stress intensity at point A due to
section 4 of the gob is

"Derive—A Mathematical Assistant" solved both of these
integrals.  The solutions yield a rather cumbersome equation that
is impractical to include in this paper; however, it can be in-
corporated into spreadsheet software or computer code.  Table 1
includes the K factors for all six sections of the longwall gob.
The effect on the stress intensity factor at point A caused by all
six sections is

Kgob ' K1 % K2 % K3 % K4 % K5 % K6

Kgob ' 13.8 % 10.7 % 14.1 % 15.9 % 18.0 % 25.8
Kgob ' 98.3
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Figure 10.CCLongwall gob simulated as point forces of different strengths.

Table 1.CCInput variables and stress intensity factors for each section of the longwall panel
depicted in figure 10

Section 1 Section 2 Section 3 Section 4 Section 5 Section 6
Fys, MPa . . . . . . . . . . . . . . 13.8 13.1 12.4 10.3 8.3 6.9
x-range, m . . . . . . . . . . . . . 61.0-36.6 36.6-18.3 18.3-0 0-18.3 18.3-36.6 36.6-55.0
Stress intensity at point A
   (%x side) . . . . . . . . . . . . . C C C 15.9 18.0 25.8
Stress intensity at point A
   (&x side) . . . . . . . . . . . . . 13.8 10.7 14.1 C C C

Kgob . . . . . . . . . . . . . . . . . . 98.3 C C C C C

Input parameters:
Width of longwall face ' 232 m
1/2 width of longwall face ' 116 m
2a  (width of longwall face plus gate entry) ' 122 m
a ' 61 m
Finsitu ' 13.8 MPa

Equation 4 determines the stress in absence of the gob (point
forces) as

It is necessary to reduce this intensity to reflect the addition of
the gob material.  The stress intensity factor at point A now
becomes

Ktotal ' Kinsitu & Kgob

Ktotal ' 92.7

The dummy variable used to relate this stress reduction to the
Westergaard equation is

The modified Westergaard distribution at point A becomes
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Figure 11.CCCrack opening completely filled with point forces equal to the in situ stress.

Figure 12.CCStress distribution at point A is nearly flat and equal to the in situ stress.

This is the general technique used to model longwall gob.  Luo
significantly improved the above technique and developed a
computer program to model the stability of longwall chain
pillars [Kramer et al. 1998].

HYDROSTATIC FORCES

It is possible to measure the effect of hydrostatic forces on
the coal seam.  A hydrostatic force acts with equal strength in
all three cardinal directions.  It is similar to the pressure ex-
erted from water or gas.  To simulate a hydrostatic force, it is

necessary to fill the entire mine opening with a continuous
distribution of point forces (figure 11).  In order to test the
hydrostatic effect, the point forces are set equal to the in situ
stress (13.8 MPa).  This situation should have the effect of
flattening the stress distribution at point A to a level equal to the
in situ stress.

Figure 12 is a plot of the stress distribution.  It can be seen
the distribution is almost uniform and equivalent to the in situ
stress.  This further demonstrates that the point-force method
accurately describes the effective stress distribution at the mine
rib.
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TECHNIQUE TO COMBINE DIFFERENT
MINE SUPPORTS

It is possible to combine any type of mine supports and
predict the resultant stress distribution in the coal seam.
Figure 13 presents a typical mining environment combining the
following structures:  a longwall gob, a yield pillar, and a crib.
Analyzing this arrangement requires a combination of the stress
intensity factors for each support member.  This combined
value is used to reduce the total stress intensity at point A.  The
procedure for doing this is as follows:

•  Calculate Kinsitu for point A
•  Calculate Kgob for point A
•  Calculate Kyield for point A
•  Calculate Kcrib for point A
•  Combine the stress intensity factors for each support,

and use this value to reduce the stress intensity associated with
the entire opening width:

Ktotal ' Kinsitu & Kgob & Kyield & Kcrib

EVALUATING PILLAR YIELD

Because coal mines are often located at a great depth
below the surface, the stress levels often exceed the yield
strength of the coal.  It is necessary to account for yielding in
the coal pillars to correctly assess structural stability.  Fracture
mechanics is useful in predicting the yielding characteristics
of the coal.

The Westergaard equation introduces a singularity at the
pillar edge.  This is where the stress distribution approaches
infinity.  The pillar edge yields and redistributes the loading
in order to eliminate the singularity.  The yielded zone
continues to offer residual support to the roof and floor.

Dugdale provides a way to estimate the length of this
yield zone in the pillar [Dugdale 1960; Broek 1982].  The
following sections describe how to determine the extent of the
yield zone.  Also described is a way to predict the stress
distribution in the elastic core of the pillar.  First, the basic
technique used by Dugdale to arrive at his yield zone
prediction is reviewed.  Later, a technique is introduced that
determines the extent of the yield zone specifically in coal.

THE EFFECT OF POINT LOADING ON THE
STRESS INTENSITY AT THE CRACK TIPS

As mentioned previously, figure 8 depicts a crack with an
internal wedge force P pushing out against the crack surface.
This force P is at a distance x from the crack center.  These
wedge forces affect the stress intensity function, K, at points
A and B.  It is possible to use equations 2 and 3 to predict
these stress intensity factors, K [Paris and Sih 1965].  A form
of these equations is fundamental in the development of
residual forces supporting the roof and floor in the yielded
portion of the pillar.

DUGDALE'S APPROACH TO CRACK TIP
YIELDING

Although the pillar edge yields, it has a residual strength
that supports the roof and floor of the coal seam.  Imagine this
residual support as a continuous distribution of dislocated

point forces (figure 14).  Dugdale determined the extent of the
yielded zone by first assuming that the residual strength of each
point force is equal to the yield strength, Fys, of a material (in this
case, coal) [Dugdale 1960; Broek 1982].  Because the yielded
edge is significantly weaker, it would seem as though the mine
opening becomes wider.  The mine opening would theoretically
extend into the pillar to the point where yielding stops.  At this
point, the singularity disappears because of the canceling effect
of the residual stress in the yield zone.  The effective mine width,
aeff ' a % D, represents the distance to the new elastic crack tip,
where D symbolizes the extent of the yielded zone.

The yielded zone, D, exerts a residual stress equal to the yield
stress, Fys.  The yield zone, D, depicted as additional opening
width, is not really an opening; the material can still bear the yield
stress.  The size of D is chosen so that the stress singularity
disappears:  Ktotal approaches zero.  This means that the stress
intensity, Kinsitu, due to the uniform in situ stress, F, has to be
compensated by the stress intensity, KD, due to the residual wedge
forces Fys [Broek 1982].  In other words:

Kinsitu ' &KD (14)

Satisfying equation 14 leads to the determination of D in the
following manner.  Equations 2 and 3 describe how a point load
affects the stress intensity factor, K.  If the wedge forces are
distributed from s to the effective crack tip, the stress intensity
becomes

Solution to this integral is
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Figure 13.CCModeling various support structures using the point-force technique.

Figure 14.CCContinuous point forces approximate the residual pillar strength in
yielded zone preceding the elastic crack tip.

Applying this result to the crack in figure 14, the integral
has to be taken from s ' a to a ' a % D.  Thus, "a" has to be
substituted for "s" and "a % D" for "a" in equation 16, while
P equals the yield strength, Fys [Broek 1982].  This leads to
the determination of the yield zone as

where D is the extent of the pillar yield zone.

Dugdale's description of the yield zone does not
provide a simple way to predict the stress distribution in the
elastic core adjacent the yielded edge.  Irwin presents a
method to predict the stress distribution in the elastic
portion of the pillar [Broek 1982].  Irwin describes a yield
zone that is similar in length to Dugdale's prediction;
however, the crack tip extends only one-half the distance
(figure 15).

The singularity vanishes if area A ' area B.  It was possible
to verify this using spreadsheet software.  It is particularly
accurate for values of  F/Fys less than 0.75.  Irwin's description
produces the stress distribution shown in figure 16.  This
distribution is not representative with in situ measurements taken
at underground mines [Mark and Iannacchione 1992].

PLAIN STRAIN

Dugdale's method concerns conditions of plane stress.
Pillar analysis requires a plane strain condition.  Studies indicate
that for the case of plain strain, the effective yield stress can be
as great as three times that for a similar plain stress analysis.
This is due to confinement, which increases the triaxial yield
strength.  Broek suggests modifying the yield stress with the
constraint factor:

p.c.f. ' 1.68Fys (18)
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Figure 15.CCThe Westergaard distribution originates at the beginning of the Irwin zone, but does not take
effect until the beginning of the elastic zone.

Figure 16.CCPillar stress distribution as predicted by the Dugdale-Irwin method.

THE DUGDALE-IRWIN METHOD AS IT RELATES TO
A MINE ENVIRONMENT

Previous research indicates that confinement increases the
yield strength of a pillar core [Crouch and Fairhurst 1973;
Karabin and Evanto 1999; Sih 1966; Salamon and Munro
1967].  However, the measured pillar stress distribution does
not resemble the distribution predicted by Dugdale-Irwin shown
in figure 16.  Underground measurements show the residual

strength should be low at the wall of the mine opening, but
increase proportionally with the distance into the pillar
core.

The mathematical model predicted by Dugdale-Irwin is
accurate; only the visual perception is misleading.  The
residual stress distribution in the yielded area can take on
any shape as long as area A equals area B (figure 17).
A more realistic stress distribution such as that in figure 18
should then be possible.
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Fv(x) ' S1 × 0.78 % 1.74 x
h

, (19)

Figure 17.CCYield stress can assume any shape provided that area A equals area B.

Figure 18.CCPossible contour of pillar stress using the Dugdale-Irwin method.

COMBINING EMPIRICAL METHODS INTO THE ANALYTIC ANALYSIS

The Westergaard equation introduces a singularity at
the pillar edge; this is where the stress approaches infinity.
To eliminate this singularity, the edge must yield and
redistribute the load.  The yielded edge retains a residual
strength that offers confinement to the core.

In situ field measurements demonstrate a nonlinear
residual stress distribution in the yield zone of a coal pillar.
The stress is low at the pillar rib and increases rapidly into
the center of the pillar.  This indicates that confinement
makes the pillar strength higher than the unconfined
compressive strength used by Dugdale-Irwin.  It is possible
to use the point-force method to model this residual strength
and thus predict the extent of the yield zone.  It is a
common numerical technique to study the yielding coal

with a strain-softening model [Crouch and Fairhurst 1973; Wil-
son 1972].  Figure 19 depicts a model in terms of stress versus
strain in a timeframe denoted by peak and post (residual) stress.

It is possible to use any of the popular pillar strength
equations to predict the strain-softening characteristics of the
coal.  The equations of Bieniawski and Holland-Gaddy are the
most accepted of these equations [Mark and Iannacchione 1992].
Mark and Iannacchione developed an equation that represents an
average of these two equations.  It predicts the pillar strength as
a function of distance from the opening.  This equation is:



130

Favg ' Fv(1m) ' 3.5 0.78 % 1.74 1
2

' 5.8 MPa

Kps1,1
'

Favg

Baeff
m
aeff

a

aeff % x

aeff & x
%

aeff & x

aeff % x
dx .

Figure 19.CCThe stress-strain characteristics in the yield
zone of a coal seam.

Figure 20.CCIt is possible to model peak or post stress as
several groups of point forces.

where Fv ' peak stress at distance x, MPa,

S1 ' in situ coal strength, MPa,

x ' distance to the free face, m,

and h ' seam height, m.

It is possible to model the stress distribution in the yield
zone as a series of point forces (figure 20).  These

continuous series of point forces has a uniform intensity
within each group.  Equation 19 will predict the average
strength assigned to each group.  It is necessary to use an
iterative technique to determine the extent of the yield zone.
This iterative technique progressively yields each group
while testing for the disappearance of the singularity.  When
KP $ Kinsitu, the yielding stops.  Luo has eliminated the need
for an iterative technique by providing the exact solution for
the equation [Kramer et al. 1998].

EXAMPLE:  USING STRAIN-SOFTENING TO DETERMINE THE EXTENT
OF THE YIELD ZONE

Originally, this example was formulated using U.S.
customary units of measurement.  Conversion to the metric
system makes some values appear awkward.

GROUP 1:  0-2 m INTO THE PILLAR

Input Parameters:

S1 ' 3.5 MPa
Finsitu ' 6.9 MPa
Entry width (2a) ' 6 m
a ' 3 m
Extension of group 1 (e1) ' 2 m
h ' 2 m
aeff1 ' a % e1 ' 5 m

The first group of point forces simulates the post strength
for group 1, which is the first 2 m into the pillar

(figure 20).  These point forces are uniform; therefore, it is
necessary to use equation 19 to determine an average
strength value.  This value will be assigned the point forces
in group 1.  An estimate of the average point force for
group 1 would be determined from equation 19 for a point
1 m into the pillar.

The stress intensity relating to this average point force is
taken from equation 15 as
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% Kps1,2

' 33.6
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' 6.9 B(5 % 2)

' 32.3

FIrwin zone '
Finsitux

x 2 & (a % *)2
. (21)

Equation 16 solves this integral as

The stress intensity for group 1 in absence of the point forces
is

Kps total is less than Kaeff1; therefore, this section is yielded and
the crack extends to the end of the next section (group 2).  The
coal continues to yield until the residual pillar stress overcomes
the in situ Westergaard stress.

GROUP 2:  2-4 m INTO THE PILLAR

Input Parameters:

e2 ' 2 m
aeff1 ' 5 m
aeff2 ' aeff1 % e2 ' 7 m
Midpoint of group 2 is 3 m into the pillar

The crack tip is extended 4 m (i.e., e1 % e2) to the end of
group 2.  This makes aeff2, the effective crack tip, equal to 7 m.
Using equation 19, the average stress in this section is
11.9 MPa.  This is the post strength determined for a location
3 m into the pillar.  The stress intensity caused by the wedge
forces in group 2 is

It is necessary to also consider the stress intensity caused by
the residual point forces in group 1.  Because the crack tip
extended into the 2-to 4-m (group 2) section of the yield zone,
it is necessary to recalculate the effect of the 0- to 2-m
(group 1) section of the yield zone:

"Derive—A Mathematical Assistant" determined this value
to be:

The total stress caused by the point forces is

The stress intensity caused by the crack extension to the end
of group 2 in absence of the residual point forces is

This stress factor is less than the stress intensity due to the
residual strength point forces (Kaeff2 < Kps total); thus, the
yielding ceases in group 2.  Because the values are nearly
equal, the crack extended almost to the end of group 2 (i.e.,
4 m into the pillar).  It is possible to refine this distance, but
it is unnecessary for this example.  Equation 19 will predict
the stress distribution in the yield zone; the Westergaard
equation will predict the distribution in the elastic core.

Irwin suggests a way to use the Westergaard equation to
predict the stress distribution in the pillar's elastic core (at the
edge of the yield zone) [Broek 1982].  Irwin agrees with
Dugdale's prediction for the extent of the yield zone, but he
argues that the crack tip extends into this zone one-half the
distance predicted by Dugdale such that

* ' D/2 ' 2 m (in the previous example).

This increases the effective crack width to

aeff ' a % * ' 5 m.

This is the beginning of the Irwin zone—the region from
which the Westergaard equation predicts the stress
distribution into the core of the material (figure 21).

Extending the crack tip to the beginning of the Irwin zone,
the Westergaard equation becomes
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Figure 21.CCThe Westergaard equation begins in the Irwin zone; it takes effect in the elastic
zone.

Figure 22.CCStrain softening in the process zone and a Westergaard distribution in the elastic zone.

Although the x-origin in the Westergaard equation
begins in the Irwin zone, the stress distribution does not
take effect until the beginning of the elastic zone.  Equation

19 describes the stress distribution throughout the entire yield
zone.  Figure 22 shows the stress distribution for the combined
strain-softening and analytic models.



133

Fcomponent '
Finsitux

x 2 & a 2
& Finsitu . (22)

Figure 23.CCPillar stress broken down into three components.

SUPERPOSITION

A mine opening affects the stress distribution at each of
its sides.  A mine panel is a gridwork of regularly or
irregularly spaced entries and crosscuts.9  For a complete
stress analysis, it is necessary to consider the stress influ-
ences caused by every mine passageway.  A superposition
technique makes this possible [Kramer 1996].

The superposition technique requires subdividing the
stress distribution into its constitutive components
(figure 23).  Each side of the pillar is subjected to a

9An entry is a tunnel aligned in the main direction of mining.
A crosscut connects individual entries, usually at a right angle.  Several
entries and crosscuts comprise a mine panel.  A pillar is coal remaining in
place between two entries and crosscuts; it supports the mine roof.

Westergaard stress distribution.  Restricting the pillar model to
two dimensions, as  in the case of plane strain, limits these
distributions to the left and right sides of the pillar.  The basic
components needed in the superposition are the uniform in situ
stress, the stress component from the left opening, and the stress
component from the right opening.  The right and left stress
components are each equal to the Westergaard equation with the
in situ stress removed such that
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Figure 24.CCPillar with stress superimposed from both sides.

Figure 25.CCWestergaard equation and superpositioning stress over an entire mine panel.
Comparison with numerical model.

The left stress component has the origin of its axis
located to the left of the pillar.  The positive direction, rel-
ative to this axis, is rightward from the origin into the pillar.
The right component is the mirror image of the left.  This
component has the origin of its axis to the right of the pillar.
The variable "a" can have a different value for each side of
the pillar (figure 23).  The total stress distribution on the
pillar is equal to the left component plus the uniform

in situ stress plus the right component.  As verified by FLAC,
the superposition technique accurately predicts the stress
distribution across a single pillar (figure 24).

A mine opening affects the stress distribution for a substantial
distance.  A mine panel consists of a gridwork of entries and
crosscuts.  It is necessary to superimpose the stress components
from all mine passageways.  FLAC compares the results of the
superposition across an entire mine panel (figure 25).
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Figure 26.CCFracture mechanics predicts the center stress in both directions through the
pillar.  An interpolation technique translates the stress along the elliptical trajectories.

POSSIBLE ENHANCEMENTS

It is possible to enhance the modeling capabilities of the
FMA.  Adding other techniques would give the ability to
analyze displacements in the strata, creep behavior in mine
supports, and the effects of multiple-seam mining.  Because
the FMA is straightforward and easy to use, there is
potential to model many different mining situations.

The following sections discuss some possible additions
to the FMA.  Although each technique presented seems rea-
sonable, no comparison has been made with numerical
analysis to qualify accuracy.

VIEW OF STRESS DISTRIBUTION FROM A
PLANAR PERSPECTIVE

Sometimes it is desirable to study the stress distribution
looking down on the coal seam (planar view) instead of into
it (cross-sectional view).  In a planar view, coal pillars are
rectangular.  The corners of the pillar generate mathematical
singularities that create problems for analysis.  One way to

eliminate the singularities is to assume the pillar is an ovaloid
instead of a rectangle [Kramer 1996].  It is possible to segment
the pillar into concentric ovaloid lines of equal distance (fig-
ure 26).  Fracture mechanics predicts the stress distribution
through the pillar centers, as indicated by the vertical and
horizontal lines in figure 26.  An interpolation technique can ap-
proximate the stress throughout the pillar by using the concentric
ovaloid arcs as interpolation pathways.  For instance, the arc
segment between points A and B in figure 26 would be the in-
terpolation path between the stresses at points A and B.  It is
easy to interpolate the stresses along ovaloid paths.  The basic
equations for mapping elliptical coordinates to Cartesian
coordinates are:

x  '  a cos 2

y  '  b sin 2 (23)

An example of the interpolation process follows.
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90
5

' 18° (24)

1,500 psi & 1,000 psi
5 intervals

' 100 psi per interval (25)

COD ' 2v '
4F
E

a 2 & x 2
(27)

CODmax ' 2v '
4Fa
E

. (28)

Figure 27.CCRelationship between elliptical and rec-
tilinear coordinates.

Figure 28.CCStresses distributed along interpo-
lation arc.

Figure 29.CCThe crack opening displacement (COD) method
considers the displacement of the entire surface of a crack.

EXAMPLE OF INTERPOLATION

Considering the elliptical path shown in quadrant I of
figure 27, interpolate the stresses along path A-B in the outer
arc of quadrant I.  For this example, assign the following
properties:

FA ' 1,000 psi

FB ' 1,500 psi

a ' 20

b ' 10

Divide 2 into five equal angles:

Determine the stress interpolation interval for each 18° arc:

Figure 28 illustrates the stress distribution along this arc.
Equation 24 relates any point on the A and B axis to any point
on the ovaloid (figure 27).  Therefore, it is possible to
approximate the stress distribution throughout the entire pillar.

VISCOELASTICITY

Sih [1966] and Paris and Sih [1965] discuss crack behavior
in viscoelastic (time-dependent) material.  For viscoelastic
material, the crack-tip stress field is the same, only the stress
intensity factors KI are functions of time, such that

KI ' KI(t) (26)

This function shows promise for future applications using the
FMA.  For instance, it could be valuable for studying the be-
havior of salt.

DISPLACEMENTS

Fracture mechanics may also predict the displacement/
strain in a mine environment.  A common method to predict
displacement is referred to as the "crack opening
displacement" (COD) [Broek 1982].  The COD method takes
into account the total displacement of the crack surface
(figure 29).  In mining, the COD predicts the combined
displacement of the roof and floor of an opening, such that

and at the center of the opening:
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MULTIPLE-SEAM MINING

It may be possible to predict the effects on stress distribu-
tion caused by mining activity in seams above or below the
area of interest.  By using stress influence functions developed
for mine subsidence prediction, it should be possible to predict
multiple-seam influences with a respectable degree of
accuracy

[Luo 1997].  This multiple-seam model could be more
accurate than other numerical methods because most other
methods use influence functions based on the theory of
elasticity, which assumes infinitesimal displacements.  Using
influence functions based on mine subsidence profiles takes
into account the well-documented, large-scale displacements
measured at various mine locations.

CONCLUSION

This paper presents the FMA for predicting the stresses in a
mine panel.  It can model any combination of mine supports
such as longwall gob, yield pillars, cribs, chocks, posts,
automated temporary roof supports, and hydrostatic loads.  The
technique uses an analytic expression; thus, it is fast, simple,
and accurate.  It simulates pillar yield by combining the analytic
equation with any empirical pillar strength equations.  The pro-
cedure incorporates easily into spreadsheets or computer
software.  The FMA predicts pillar stress with a high degree of
accuracy; however, it is no match to good numerical modeling

software.  Its main function is to be quick and simple in or-
der to encourage nonspecialized personnel to use it as a
guide for studying mine supports.

The FMA works well for coal seams aligned along a
horizontal plane.  Additional effort is needed to assess its
accuracy for seams aligning along inclined planes.  More
work is also necessary to develop FMA techniques for thick-
seam mining, multiple-seam mining, and displacement
prediction.  Computer software featuring the FMA is
available from the author.
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